

Why Ethanol from Cellulosics is Nearer Than You Think

Professor Bruce E. Dale and Venkatesh Balan
Dept. of Chemical Engineering & Materials
Science
Michigan State University
www.everythingbiomass.org

Agri-Energy Conference March 14, 2007

Thank You Mr. President

Ethanol Production from Enzymatic
Hydrolysates of AFEX-Treated
Coastal Bermudagrass and Switchgrass

SULTAN RESHAMWALA,¹
BAHAA T. SHAWKY,² AND BRUCE E. DALE*

¹Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122; and ²Microbial Chemistry Department, National Research Center, Cairo, Egypt

"...We'll also fund additional research in cutting-edge methods of **producing ethanol...from** wood chips and stalks, or **switch grass...**"

State of the Union Address, **2006**

Applied Biochemistry and Biotechnology, Vol. 51/52

So It's Not Just About Politics

- Better Technologies
 - Better & cheaper pretreatments-AFEX for example
 - Better & cheaper enzymes
 - Better fermentation organisms
 - Consolidated bioprocessing (CBP) is progressing
 - Better integration of these technologies
- Venture capital & (we hope) more research funding
- Heightened awareness of oil "externalities"
 - Potential for climate change
 - Economic development driver
 - 9/11 and terrorism
- RFS & other help from our "big brother": ethanol from corn
- Testing platforms: pulp mills & corn mills
- \$60 per barrel oil (or thereabouts)

Plant material is much, much cheaper than oil on both energy & mass basis

Glucose, Crude Oil & Natural Gas Price Index

From J. Stoppert, 2005

Impact of Processing Improvements: Oil's Past & Future

- Historically, petrochemical processing costs exceeded feedstock costs
- Petroleum processing efficiencies have increased and costs have decreased dramatically but reaching point of diminishing returns
 - Petroleum raw materials have long-term issues
 - Costs will continue to increase as supplies tighten
 - High price variability
 - Impacts national security
 - Climate security concerns
 - Not renewable
- Not a pretty picture for our petroleum dependent society

Impact of Processing Improvements: The Future of Biomass Conversion

- Processing is dominant cost of biofuels today
- Cellulosic raw material costs should be stable or decrease
- Processing costs dominated by pretreatment, enzymes & fermentation
- Biomass processing costs <u>will</u> decrease: deserves high priority to make it happen sooner rather than later
- Much more attractive future
 - Domestically produced fuels
 - Environmental improvements
 - Rural/regional economic development

Adapted from J. Stoppert, 2005

Learning Curve: Sugar Ethanol Production Cost

(J. Goldemberg, 2003)

Accumulated Ethanol Production (Million m³)

From a Techno Guy's Viewpoint

- Better technologies
 - Better & cheaper pretreatments
 - Ammonia fiber expansion (AFEX)
 - Better & cheaper enzymes-
 - AFEX with optimal enzyme mixtures
 - Better fermentation organisms
 - AFEX with engineered microbes
 - Consolidated bioprocessing (CBP)
 - AFEX with CBP
 - Better integration of these technologies
 - Cost reductions cascade with integration

How does AFEX work?

- ➤ Biomass heated (~100 C) with concentrated ammonia
- > Rapid pressure release ends treatment
- > 99% of ammonia is recovered & reused, remainder serves as N source downstream for fermentation
- > Minimize sugar degradation, relatively mild conditions

■ Net Stover

□ Other Variable

Pretreatment Economic Analysis: CAFI Team

■ Fixed w/o Depreciation

■ Depreciation

Income Tax

Return on Capital

Results of CAFI Economic Analysis for AFEX*

- Reduce ammonia loadings
- Reduce required ammonia recycle concentrations (manage system water)
- Reduce capital cost of AFEX
- Reduce enzyme loadings for >90% conversion of glucan <u>plus</u> xylan
- * Our sincere thanks to Dr. Tim Eggeman: NREL & Neoterics

Reducing Ammonia Loading: 16 Hour Yields

Managing Ammonia & Water in AFEX for High Sugar Yields

Ammonia Distribution	Water Distribution	% Sugar Yields G/X
All as NH3	All in stover	93.0/74.3
³¼ NH3; ¼ NH4OH	½ NH4OH; ½ stover	93.0/78.9
(677 (677	All in NH4OH	79.9/64.9
½ NH3; ½ NH4OH	All in NH4OH	57.7/47.9
((3)	½ NH4OH; ½ stover	97.8/82.0
All NH4OH	All NH4OH	71.0/57.0
(69) (69)	3/4 NH4OH; 1/4 stover	97.1/79.0

Constant final conditions: 1 kg NH₃/kg dry stover, 60% moisture dwb, 90°C, 5 min.

Innovative Ammonia Recovery Approach

Slurry Distillation w/Quench Condensation NH3 Recovery

Energy Flow	(% feed LHV)	
Q _{reactor}	0%	
Q _{column}	2.6%	
W _{chilled water}	0.3%	
TOTAL	2.9%	

Note: 3 atm (upper limit to keep T column < 140 °C at bottom)

Effects of AFEX Process Improvements: New Cost Estimates (w/out Reduced Enzyme)

Abbreviation	Meaning
NREL-2004	SSCF, NH3 Recompression, Old AFEX parameters
SSF-COMP- UPD	SSCF, NH3 Recompression, Updated AFEX parameters
SSF-NEW-UPD	SSCF, New NH3 Recovery approach, Updated AFEX parameters
CBP-NEW- UPD	CBP, New NH3 Recovery approach, Updated AFEX parameters
Mature	Cost 70% Feedstock, 30% Processing

Final Results

Impact of Process Improvements: Cellulosic Ethanol is Nearer than You Think

- Processing is dominant cost of biofuels today
- Cellulosic raw material costs should be stable or even decrease long-term
 - Renewable resource
 - Potential for very large yield increases
- Biomass processing costs will decrease: Key question is how far and how fast
 - We need to get cellulosic ethanol out of the lab and into commercial operations

Adapted from J. Stoppert, 2005

Ethanol from Cellulosics: Look for Fast Growth!

Capturing Local Benefits from Biofuels

- Some problems/issues:
 - Environmental benefits depend largely on local factors—requires local control & optimization
 - Cellulosic biomass is bulky, difficult to transport
 - Investment required for cellulosic ethanol biorefinery is huge ~
 \$250 million and up—difficult for farmers to participate
 - Supply chain issues are also huge—need 5,000 ton/day from ~1,000 farmers: chemicals/fuels industries have zero experience with such large agricultural systems
 - Supply chains established for grains, not so much for grasses
 - Need to resolve "food vs. fuel": actually "feed vs. fuel"
- Is there a common solution?
 - Regional Biomass Processing Center
 — concept worthy of further study and development
 - Pretreat biomass for biorefinery & ruminant animal feeding
 - Much lower capital requirements—accessible to rural interests
 - Potential to also accomodate high value uses: materials, nutraceuticals, enzymes, etc.

FARMS/ FORESTS

HIGH VALUE USES

ANIMAL FEEDERS REGIONAL BIOMASS PROCESSING CENTER (AFEX)

POWER PLANT

MATERIALS PRODUCERS

BIOREFINERY

Why We Should Explore Regional Biomass Processing Centers

- Rising corn prices negatively affect animal feeding operations— provide feed alternatives
- Ruminant animals are well-suited to high digestibility grasses (by pretreatment)
- Develop prototype supply chains & pretreatment systems for cellulosic ethanol (and butanol and...)
- Many more states/locations can grow grass than can grow corn—more widespread benefits
- Provides processing locus for high value products (biobased composites, nutraceuticals, etc.)
- Position ourselves to export these technologies

Rebutting Some Ethanol Myths

- Ethanol has a negative "net energy"
 - Gasoline has a worse net energy & besides, the "net energy" discussion is foolish
- People will starve with large scale biofuels
 - It is much more likely that food supplies will increase with very large scale biofuels
- We will devastate the environment with large scale biofuels
 - Actually, environmental improvements are both possible and likely

Questions ??

